

Department of Science & Technology Ministry of Science & Technology Government of India

NMSHE NATIONAL MISSION FOR SUSTAINING THE HIMALA ECOSYSTEM **MEGHALAYA** CLIMATE CHANGE CENTRE



wiss Agency for Developme and Cooperation SDC

# Climate Vulnerability Assessment *for* Meghalaya

# Using a Common Framework at District Level Assessment (2018-2019)



# **Vulnerability Assessment**

**Climate change** is resulting in new threats and uncertainties undermining the socio-economic development in Meghalaya. A comprehensive understanding of the key risks and vulnerabilities based on robust research is a pre-requisite for planning for adaptation. The multiplicity of challenges in the State at spatial level calls for the need of a coordinated and integrated approach for adaptation planning.

A common framework for vulnerability and risk assessment was developed by the Indian Institute of Science (IISc), IIT- Guwahati and IIT- Mandi. This common framework can be applied to understand and bring out a vulnerability profile of the each vulnerable sector.

The Meghalaya Climate Change Centre organised a 3 day programme on "Level 3: Training Programme for District Level Officials & Level 4: Training of Trainers Programme on Climate Change Adaptation" at Shillong. The training programme saw representatives from 14 State Government departments brought together to enhance their understanding about vulnerability and risk, availability and requirement of datasets and to map the vulnerability using the common framework.

The training programme highlighted:

- 1. Hands-on training in carrying out the vulnerability assessment and developing the vulnerability maps
- 2. Identifying a set of common indicators for district-level vulnerability assessment and mapping
- 3. Identifying a set of common indicators for block -level vulnerability assessment and mapping
- 4. Discussion on and finalization of the weights to be given to each of the indicators and finalization of the same
- 5. Departments carrying out a mock sector vulnerability assessment and presenting the results and receiving feedback

This manual along with the training conducted shall provide the necessary impetus to carry out a sectoral vulnerability assessment at district/block level (since data may be available prior to the bifurcation of districts we suggest that Block level data may be considered upon which statistically the blocks will be regrouped to create the 11 present districts). The Centre will provide all necessary assistance and will also act as a catalyst to ensure that a sectoral vulnerability index/map of the State is developed.

The primary aim for the departments will be to identify the important indicators (along with their rationale) for each sector, this will be followed by the assigning of weights to the indicators (again, along with the rationale).

# 1. What is vulnerability?

Intergovernmental Panel on Climate Change (IPCC) conceptualizes vulnerability as the propensity or predisposition of a system to be adversely affected. It includes sensitivity or susceptibility to harm and lack of capacity to cope and adapt. It is an internal property of a system and dynamic in nature. It has significant implications when discussed in the context of susceptibility of fragile ecosystems, such as the Himalayan Region, to climate stimuli. IPCC 4th Assessment Report (2007) considered 'exposure' as one of the three elements of 'vulnerability' other two being sensitivity and adaptive capacity. However, post 2007, this conceptualization of vulnerability has been modified and 'exposure' is no longer considered to be a component of 'vulnerability'. The IPCC 5<sup>th</sup> Assessment Report (FAR, 2014) has adopted this conceptual construct of vulnerability and presented 'exposure' separate from 'vulnerability' while representing 'risk'. Risk arises from interaction of hazard, exposure and vulnerability. For the current assessment, post-2007 framework has been followed.

Basically Risk is a function of hazard, exposure and vulnerability. In notations, it can be written like the following.

Risk = f (Hazard, Exposure, Vulnerability); where f depicts the functional relationship. Vulnerability thus is a component of risk. Also vulnerabilities can be off different types. We are mainly considering the social vulnerabilities here.

- We define vulnerability here and also distinguish between social and biophysical.
- We define current and future Vulnerability here and then in the later section we stick to current vulnerability only

# 2. Need for Vulnerability Assessment (VA)

Vulnerability assessments help us to:

- 1. Identify the areas/systems/communities that are vulnerable.
- 2. Assess the extent of vulnerability.
- 3. Identify the drivers of vulnerability.
- 4. Plan adaptation actions.
- 5. Disseminating awareness among the stakeholders.

It is useful to assess vulnerability under both the scenarios i.e. under current climate change and future (long-term) climate change scenarios. In the current assessment, we focus on the assessment of current climate vulnerability, as evolving adaptation strategy based on the current climate vulnerability assessment is a reliable and 'no-regret' approach to reduce current vulnerability and build long-term resilience under climate change. This is, in fact, the first step of any vulnerability assessment undertaken with the aim to reduce the risk under uncertain future.

# 3. What are the main steps in VA?

# **Step 1: Scoping and Objectives**

First we need to identify the objective or purpose of the assessment and the target audience of any particular VA.

|                               | Table 1: Scoping and Objectives of VA                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |  |  |  |  |  |  |
|-------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|--|
| Steps of Scoping              | Explanation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |  |  |  |  |  |  |
| Identifying the<br>need of VA | <ul> <li>VA is required under following conditions: <ul> <li>Exposure to climatic stressors</li> <li>Importance of the (vulnerable) system</li> <li>Ability to take adaptive measures</li> <li>Persistence of vulnerable conditions and degree of irreversibility (of consequences)</li> <li>Presence of factors making societies vulnerable to cumulative stressors</li> </ul> </li> <li>We must remember that there is no hard and fast rule that all the five conditions must be present.</li> </ul> |  |  |  |  |  |  |  |  |
| Region & unit of<br>VA        | The geographical area where VA is carried out and the units of assessment.                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |  |  |  |  |  |  |
| Defining the objectives       | Identify the most vulnerable areas (i.e.<br>regions/communities/systems)<br>Gain direction for adaptation planning.<br>A well-defined set of objectives is needed before framing the<br>study procedure.                                                                                                                                                                                                                                                                                                |  |  |  |  |  |  |  |  |
| Identifying the stakeholders  | VA studies are done for several stakeholders and they actually<br>influence the objectives, types and rigor of the VA. So prior<br>to any study, it is must to identify the target audience and later<br>the study must be confined in that domain.                                                                                                                                                                                                                                                     |  |  |  |  |  |  |  |  |

# **Step 2: Selection of VA Type**

All VA studies come under one of the following three categories:

- i. Biophysical vulnerability study (e.g., VA for Sub-tropical pine forests in Meghalaya)
- ii. Socio-economic vulnerability study (e.g., VA for agrarian community in Meghalaya)
- iii. Integrated vulnerability study (A combination of the above two categories)

It is easily understood that integrated studies are most common, as they provide a comprehensive picture compared to the other types. The manual will focus on integrated vulnerability study where each of the Departments will take into consideration their respective bio-physical and socio- economic indicators.

### **Step 3: Selection of Tier Methods**

A VA study can be done by using primary or secondary data or by using a possible combination of the two. Also GIS data, climate model outputs or other spatial remote sensing data can be used. The methodological rigor employed and the type of data used defines the tier level of a VA study. The three tier levels for undertaking VA studies are presented in table 2.

| Different<br>Methods | Definition                                                                                                                                                                             | Advantages/Disadvantages                                                                                                                                                                                                                                                                                          |
|----------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Tier 1               | It is a top down approach based<br>largely on secondary data.                                                                                                                          | Data can be collected easily, in less time and at<br>less cost. However, data accuracy or relevance<br>may be low. Useful preliminary level assessment<br>can be undertaken using Tier 1 methodology. In<br>fact it is easiest to follow, as only elementary<br>level of skills and least resources are required. |
| Tier 2               | It involves both top down and<br>bottom up approaches. So both<br>secondary and primary data is<br>needed. It requires higher level<br>of skills and resources.                        | Data is more accurate but takes more time and is<br>more costly. VA results provide useful inputs for<br>evolving adaptation strategies/approach.                                                                                                                                                                 |
| Tier 3               | It involves both top down and<br>bottom up approaches along with<br>GIS data and spatial remote<br>sensing. It is most rigorous and<br>requires high level of skills and<br>resources. | Data is more accurate and multidimensional but<br>takes more time and is more costly. VA results<br>provide detailed and direct inputs for developing<br>adaptation plans and measures.                                                                                                                           |

#### Table 2: Different Tier Methods for VA

The District-level VA map for Meghalaya will be based on Tier 1 approach. The district level/ village level studies carried out by each state will be based mostly on tier 2 approach. They can even base their study on Tier 3 approach, if data and other resources are available. The choice of tier for any VA study depends on the objective of the study, availability of skills, time, funding and data.

# **Step 4: Restricting Area of Application**

This stage is very crucial to make the study practically doable and useful. We fix the following points prior to indicator selection.

| I | Particulariti | Idea                                                                                                                                                                                                                                                            | What will we do?                                                                                                                                                      |
|---|---------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|   | es of Study   |                                                                                                                                                                                                                                                                 |                                                                                                                                                                       |
|   | Sector        | VA study is carried out for particular<br>sector(s) (e.g., Forestry, watershed,<br>agriculture). A sector can be divided in<br>several subsectors (e.g., Agricultural sector<br>can be divided into subsectors such as cash<br>crop, fruit, horticulture etc.). | Departments may take up VA<br>studies for the sub-sector that<br>they consider to be vulnerable.                                                                      |
|   | Scale         | VA study can be carried at a micro scale<br>(e.g., household) or at a macro scale (e.g.,<br>state). It is feasible to do it for a scale in<br>between.                                                                                                          | Current VA will focus on district<br>level. However, depending on<br>availability of data, a state can<br>carry out further micro level<br>study (e.g. Village level) |
|   | Period        | Under climate change scenario vulnerability can be measured for current or future climate.                                                                                                                                                                      | Since our objective is to study<br>current climate vulnerability, the<br>time scale is not considered.                                                                |

### Table 3: Area of Application in a VA

# **Step 5: Identify the Necessary Indicators**

In any VA we have indicators of different types (i.e., Bio-Physical, Socio-economic and Institutional). Considering the objectives and scale of the study, adopted tier method, availability of necessary data, indicators are carefully chosen. **One has to be absolutely clear about the rationale behind selecting a particular indicator.** Usually, a longer list of indicators can be chosen to begin with, which is reduced to 8-10 indicators finally to undertake the study. Selection of appropriate indicators is the art of and central to a VA study. Indicators may capture 'sensitivity' or lack of 'adaptive capacity' of a system. Higher the sensitivity, higher will be vulnerability and lower the adaptive capacity higher will be the vulnerability.

Table 4 presents the indicators chosen to carry out a district-level VA in Meghalaya. It shows the various indicators used, the category to which particular indicator belongs to, its relation with the vulnerability, the way it is defined and the data sources. (**This is only for demonstration purpose**)

### Table 4: Indicators for State Level VA in Meghalaya

| Indicators                                                   | Indicator<br>Type  | Rationale                                                                                                                                                                                                                                                                          | Relationship<br>with<br>Vulnerability | Data<br>source                         |
|--------------------------------------------------------------|--------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|----------------------------------------|
| Population<br>Density<br>(PD)                                | Socio-<br>economic | Pressure on available natural resources increases sensitivity.                                                                                                                                                                                                                     | Positive                              | Census of<br>India<br>Report<br>(2011) |
| Below<br>Poverty<br>Line (BPL)                               | Socio-<br>economic | Higher percentage of BPL indicates lesser adaptive capacity.                                                                                                                                                                                                                       | Positive                              | HDR<br>Meghalaya<br>(2008)             |
| Female<br>Literacy<br>Rate (FLR)                             | Socio-<br>economic | Educated individuals and societies<br>(especially with high female literacy) have<br>better preparedness and response to<br>disasters, suffer lower negative impacts,<br>and are able to recover faster and hence<br>have higher adaptive capacity.                                | Negative                              | Census of<br>India<br>Report<br>(2011) |
| Infant<br>Mortality<br>Rate (IMR)                            | Socio-<br>economic | Infant Mortality Rate is an indicator of the<br>overall state of the public health, access to<br>improved water, sanitation and medical<br>infrastructure. Higher value implies lack of<br>adaptive capacity.                                                                      | Positive                              | Census of<br>India<br>Report<br>(2011) |
| Food grain<br>Yield<br>Variability                           | Bio-<br>physical   | High variability in yield indicates<br>fluctuations in agro-climatic conditions<br>over time. Agriculture sector has high<br>contribution to the State Domestic Products<br>and employment for the states in IHR. High<br>yield variability reflects lack of adaptive<br>capacity. | Positive                              | data.gov.in                            |
| Percentage<br>of area<br>under<br>forest (%)                 | Bio-<br>physical   | Forests provide safeguard ecological<br>processes, provide biophysical stability and<br>alternate livelihood options through<br>extraction of fodder, fuel wood, and<br>NTFPs. It enhances adaptive capacity.                                                                      | Negative                              | FSI Report<br>(2017)                   |
| Average<br>person<br>days per<br>household<br>under<br>NREGS | Institution<br>al  | Provides alternate sources of income and<br>enhances adaptive capacity.                                                                                                                                                                                                            | Negative                              | http://nreg<br>a.nic.in                |
| % area<br>with Slope<br>>30%                                 | Bio-<br>physical   | Steep topographical feature implies lack of<br>availability of flat land and difficulty in<br>access; likely to be adversely affected<br>during floods, landslide, cloudburst, etc.<br>and increases sensitivity.                                                                  | Positive                              | GIS lab,<br>MBDA                       |

*i. Positive relationship implies that higher the value of the indicator, greater is the level of vulnerability.* 

*ii.* Negative relationship implies that higher the value of the indicator, lower is the level of vulnerability.

# **Step 6: Quantification of Indicators**

We must express all indicators in terms of numbers so that we can apply mathematical operations to these. The following table shows the data entries of all the eight indicators for 7 districts of Meghalaya.

| Districts           | % Area<br>with<br>Slope<br>>30% | % Area<br>under<br>Forest | Yield<br>Variability | PD  | FLR   | IMR | BPL   | Average<br>man-<br>days<br>under<br>NREGS |
|---------------------|---------------------------------|---------------------------|----------------------|-----|-------|-----|-------|-------------------------------------------|
| West Garo<br>Hills  | 2.81                            | 77.16                     | 2.27                 | 175 | 62.70 | 384 | 53.71 | 78.81                                     |
| East Garo<br>Hills  | 6.65                            | 87.05                     | 2.22                 | 122 | 70.05 | 126 | 55.94 | 80.13                                     |
| South Garo<br>Hills | 8.84                            | 89.45                     | 0.26                 | 76  | 66.90 | 86  | 45.33 | 49.93                                     |
| West Khasi<br>Hills | 10.98                           | 75.43                     | 2.29                 | 73  | 77.19 | 251 | 47.66 | 62.29                                     |
| East Khasi<br>Hills | 21.20                           | 63.72                     | 0.19                 | 300 | 83.81 | 900 | 46.74 | 37                                        |
| Ri Bhoi             | 8.57                            | 87.54                     | 0.16                 | 106 | 74.49 | 93  | 49.94 | 46.23                                     |
| Jaintia Hills       | 7.37                            | 65.54                     | 2.06                 | 103 | 65.06 | 308 | 39.51 | 65.66                                     |

Table 5: Actual Value of Indicators in Meghalava Vulnerability Assessment

# **Step 7: Normalization of Indicators**

- i. All the 8 indicators are quantified/measured in different units. Thus, next step in the Assessment is to normalize the values of each indicator to make them unit-free.
- ii. The normalization process varies, depending on the nature of relationship of that particular indicator to Vulnerability.
- iii. *Output of this step*: Normalised Value (NV) generated against each indicator's Actual Value (AV).

For e.g., Actual Value (AV) of % area under Forest in West Garo Hills = 77.16%

Normalized Value (NV) of % area under Forest in West Garo Hills = 0.48

Normalization yields two advantages. Firstly, normalized values are unit free, which can be readily combined to arrive at the Vulnerability Index (VI) value. Secondly, they all lie between 0 and 1 (0 implies least vulnerability and 1 implies the highest vulnerability) and can be related to ranking thus enabling comparison and prioritization.

The formula used for normalization depends on whether the indicator has positive or negative relationship with vulnerability.

Case I: The indicator has positive relationship with vulnerability:

| Normalized Value (NV) = | (Actual indicator value – Min. indicator value) | (1) |
|-------------------------|-------------------------------------------------|-----|
|                         | (Max. indicator value – Min. indicator value)   | (1) |

#### Case II: The indicator has negative relationship with vulnerability

| Normalized Value (NV) = | (Max. indicator value – Actual indicator value) | (2) |
|-------------------------|-------------------------------------------------|-----|
|                         | (Max. indicator value – Min. indicator value)   | (2) |

Applying the above rule we calculate the Normalized Value (NV) of each indicator for the 7 districts.

| Districts           |                                        | Indic                            | cator (Type of              | Relations        | hip with Vu                        | ılnerabil      | ity)       |                                              |
|---------------------|----------------------------------------|----------------------------------|-----------------------------|------------------|------------------------------------|----------------|------------|----------------------------------------------|
|                     | % Area<br>with<br>Slope<br>>30%<br>(+) | % Area<br>under<br>Forest<br>(-) | Yield<br>Variability<br>(+) | <b>PD</b><br>(+) | Female<br>Literac<br>y Rate<br>(-) | <b>IMR</b> (+) | BPL<br>(+) | Average<br>man-days<br>under<br>NREGS<br>(-) |
| West Garo<br>Hills  | 0.00                                   | 0.48                             | 0.99                        | 0.45             | 1.00                               | 0.37           | 0.86       | 0.03                                         |
| East Garo<br>Hills  | 0.21                                   | 0.09                             | 0.97                        | 0.22             | 0.65                               | 0.05           | 1.00       | 0.00                                         |
| South Garo<br>Hills | 0.33                                   | 0.00                             | 0.05                        | 0.01             | 0.80                               | 0.00           | 0.35       | 0.70                                         |
| West Khasi<br>Hills | 0.44                                   | 0.54                             | 1.00                        | 0.00             | 0.31                               | 0.20           | 0.50       | 0.41                                         |
| East Khasi<br>Hills | 1.00                                   | 1.00                             | 0.01                        | 1.00             | 0.00                               | 1.00           | 0.44       | 1.00                                         |
| Ri Bhoi             | 0.31                                   | 0.07                             | 0.00                        | 0.15             | 0.44                               | 0.01           | 0.63       | 0.79                                         |
| Jaintia Hills       | 0.25                                   | 0.93                             | 0.89                        | 0.13             | 0.89                               | 0.27           | 0.00       | 0.34                                         |

Table 6: Normalized Value of Indicators in Meghalava Vulnerability Assessment

# **Step 8: Assigning Weights to Indicators**

Weights are assigned to each indicator according to their importance in determining vulnerability of a system. The total weight always should add up to 1. Assigning proper weights is very crucial for obtaining reliable (reflecting the reality most) results.

| Table 7: Assigned weights against each of the Indicators |                                        |                                         |                                                                                                                                                                                                      |  |  |  |  |  |  |  |
|----------------------------------------------------------|----------------------------------------|-----------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|
| Indicators                                               | Weight<br>Assigned<br>(out of<br>100)* | Weight<br>Assigned<br>(w)<br>(out of 1) | Rationale behind selecting this weight                                                                                                                                                               |  |  |  |  |  |  |  |
| Population<br>Density                                    | 1                                      | 0.01                                    | Denser population reflects higher pressure on resources                                                                                                                                              |  |  |  |  |  |  |  |
| Below Poverty<br>Line (BPL)                              | 17                                     | 0.17                                    | Larger the no. of BPL, higher will be the<br>vulnerability due to low adaptive capacity.<br>Poor economic condition limits/hamper their<br>coping mechanism/measures.                                |  |  |  |  |  |  |  |
| Female Literacy<br>Rate                                  | 0.5                                    | 0.005                                   | Higher the no. of female literates better is their<br>preparedness & response to calamities,<br>improved decision making ability and<br>enhanced income opportunities.                               |  |  |  |  |  |  |  |
| Infant Mortality<br>Rate (IMR)                           | 3.5                                    | 0.35                                    | IMR is an indicator of the overall state of the<br>public health, access to improved water,<br>sanitation & medical infrastructure.<br>Higher IMR indicates poor health conditions in<br>the region. |  |  |  |  |  |  |  |
| Food grain Yield<br>Variability                          | 30                                     | 0.30                                    | Higher variability in food grain production<br>signifies an upset production leading to<br>farmers' stress and food insecurity.                                                                      |  |  |  |  |  |  |  |
| % area under<br>forest                                   | 18                                     | 0.18                                    | Forests provide safeguard to ecological<br>processes, biophysical stability and alternative<br>livelihood options. Thus, reduction in forest<br>area leads to lower adaptive capacity.               |  |  |  |  |  |  |  |
| Average person<br>days per<br>household under<br>NREGS   | 10                                     | 0.10                                    | Low enrolment depicts lower AC of the community and will increase economic disparity                                                                                                                 |  |  |  |  |  |  |  |
| % area with<br>Slope >30%                                | 20                                     | 0.2                                     | Higher slope proportion contributes to higher<br>soil erosion and sedimentation, inaccessibility<br>and cause more damage during disasters and<br>extreme climate events.                            |  |  |  |  |  |  |  |

\*while allotting weights to the indicators

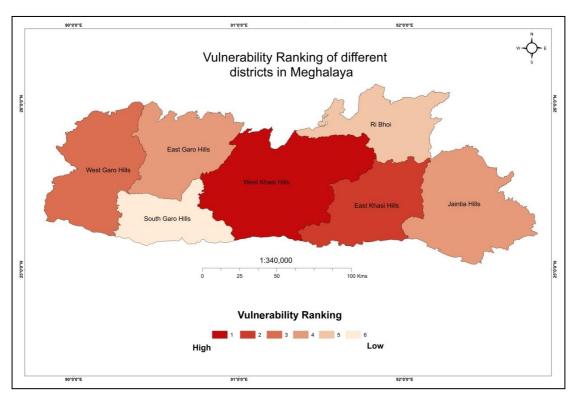
# **Step 9: Aggregation of Indicators and Developing Vulnerability Index (VI)**

The normalized indicators can be aggregated to come up with a VI. If different weights are attached to different indicators then a weighted average will be taken to calculate the VI (i.e. normalized values are to be multiplied by their respective weights and then added up). For example let us consider the case of West Garo Hills.

| Tuble 0                | Table 6. Agence and the index of the ind |               |      |          |         |          |          |                   |                   |  |  |  |
|------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|------|----------|---------|----------|----------|-------------------|-------------------|--|--|--|
| Districts              | Area<br>with<br>Slope                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Area<br>under |      | PD       | Literac | IMR      | BPL      | man-days<br>under | ity Index<br>(VI) |  |  |  |
| West Garo<br>Hills     | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.48          | 0.99 | 0.4<br>5 | 1       | 0.5      | 0.8<br>6 | 0                 |                   |  |  |  |
| Assigned<br>Weight (w) | 0.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.18          | 0.30 | 0.0<br>1 | 0.005   | 0.3<br>5 | 0.1<br>7 | 0.10              |                   |  |  |  |
| Aggregate<br>(= NV*w)  | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.09          | 0.30 | 0.0<br>0 | 0.01    | 0.0<br>1 | 0.1<br>5 | 0                 | 0.56              |  |  |  |

#### Table 8: Aggregation of Normalized Indicators & deriving Vulnerability Index Value

# **Step 10: Vulnerability Ranking**


Once VIs are calculated for all the districts, a comparative ranking is carried out based on the index value. Higher the value of VI of a particular district, higher will be the vulnerability. These vulnerability rankings are usually presented in tabular form. Here, we have ranked the Districts of the State according to their VI based on the six indicators that we have considered.

| District            |                                 |                              | VULNEI                   | RABILI | TY IND | EX (VI)                    |      |                                           | VI   | Distric      |  |
|---------------------|---------------------------------|------------------------------|--------------------------|--------|--------|----------------------------|------|-------------------------------------------|------|--------------|--|
|                     | % Area<br>with<br>Slope<br>>30% | %<br>Area<br>under<br>Forest | Yield<br>Variabilit<br>y | PD     | BPL    | Female<br>Literacy<br>Rate | IMR  | Average<br>man-<br>days<br>under<br>NREGS |      | t Rank<br>VI |  |
| West Garo<br>Hills  | 0.00                            | 0.09                         | 0.30                     | 0.00   | 0.15   | 0.01                       | 0.01 | 0.00                                      | 0.56 | 3            |  |
| East Garo<br>Hills  | 0.04                            | 0.02                         | 0.29                     | 0.00   | 0.17   | 0.00                       | 0.00 | 0.00                                      | 0.53 | 4            |  |
| South Garo<br>Hills | 0.07                            | 0.00                         | 0.01                     | 0.00   | 0.06   | 0.00                       | 0.00 | 0.07                                      | 0.21 | 6            |  |
| West Khasi<br>Hills | 0.09                            | 0.10                         | 0.30                     | 0.00   | 0.08   | 0.00                       | 0.01 | 0.04                                      | 0.62 | 1            |  |
| East Khasi<br>Hills | 0.20                            | 0.18                         | 0.00                     | 0.01   | 0.07   | 0.00                       | 0.04 | 0.10                                      | 0.60 | 2            |  |
| Ri Bhoi             | 0.06                            | 0.01                         | 0.00                     | 0.00   | 0.11   | 0.00                       | 0.00 | 0.08                                      | 0.27 | 5            |  |
| Jaintia Hills       | 0.05                            | 0.17                         | 0.27                     | 0.00   | 0.00   | 0.00                       | 0.01 | 0.03                                      | 0.53 | 4            |  |

## Table 9: Vulnerability Ranking of Districts in Meghalaya

# **Step 11: Representation of Vulnerability**

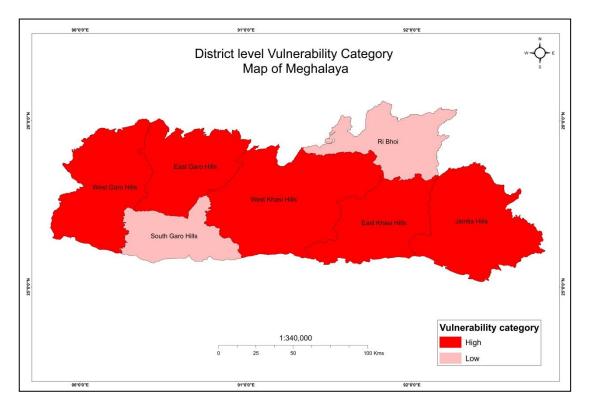
The basic idea behind representation of vulnerability is to convey the information about the state of vulnerability and the associated risks to the policy making bodies and other stakeholders. The most common way is to use spatial map with a colour gradient indicating the level of vulnerability (darker shade indicating a higher level of vulnerability). Graphs, charts or tables too are widely used. Here, we are showing the 7 districts of Meghalaya under study according to their vulnerability ranking (Map 1) and grouping of districts according to their vulnerability (low, medium and high) (Map 2).



### Map 1: Vulnerability Ranking of different districts in Meghalaya

#### **Calculations for Categorization**

Max. VI value = 0.62; Min. VI value = 0.21; Range = (0.62 - 0.21) = 0.41


We want to categorize all districts into three categories: 0.41/3 = 0.2 (Approx.)

Category 1: Highly Vulnerable: 0.5 - 0.7

Category 2: Medium Vulnerable: 0.3 - 0.5

Category 3: Low Vulnerable: 0.1 - 0.3

| District         | VI   | Level of Vulnerability |  |  |
|------------------|------|------------------------|--|--|
| West Garo Hills  | 0.56 | High                   |  |  |
| East Garo Hills  | 0.53 | High                   |  |  |
| South Garo Hills | 0.21 | Low                    |  |  |
| West Khasi Hills | 0.62 | High                   |  |  |
| East Khasi Hills | 0.60 | High                   |  |  |
| Ri Bhoi          | 0.27 | Low                    |  |  |
| Jaintia Hills    | 0.53 | High                   |  |  |



#### Map 2: District level Vulnerability Category Map of Meghalaya

# Step 12: Identification of Drivers of Vulnerability

Most vulnerability studies are conducted as a prerequisite of making policies to prevent further degradation of environmental assets. To develop efficient adaptation planning technique, identifying the main drivers behind vulnerability is crucial. VA helps in selecting adaptation measures based on the assessment of the drivers of vulnerability.

Now we will show how to find main drivers of vulnerability with the help of our VA of the districts based on six chosen indicators.

|                        | VI Value |        |                      |      |      |                    |      |       | A                 |
|------------------------|----------|--------|----------------------|------|------|--------------------|------|-------|-------------------|
| District               | Slope    | Forest | Yield<br>Variability | PD   | BPL  | Female<br>literacy | IMR  | NREGS | Aggrega<br>ted VI |
| West Garo<br>Hills     | 0.00     | 0.09   | 0.30                 | 0.00 | 0.15 | 0.01               | 0.01 | 0.00  | 0.56              |
| East Garo<br>Hills     | 0.04     | 0.02   | 0.29                 | 0.00 | 0.17 | 0.00               | 0.00 | 0.00  | 0.53              |
| South<br>Garo Hills    | 0.07     | 0.00   | 0.01                 | 0.00 | 0.06 | 0.00               | 0.00 | 0.07  | 0.21              |
| West<br>Khasi<br>Hills | 0.09     | 0.10   | 0.30                 | 0.00 | 0.08 | 0.00               | 0.01 | 0.04  | 0.62              |
| East Khasi<br>Hills    | 0.20     | 0.18   | 0.00                 | 0.01 | 0.07 | 0.00               | 0.04 | 0.10  | 0.60              |
| Ri Bhoi                | 0.06     | 0.01   | 0.00                 | 0.00 | 0.11 | 0.00               | 0.00 | 0.08  | 0.27              |
| Jaintia<br>Hills       | 0.05     | 0.17   | 0.27                 | 0.00 | 0.00 | 0.00               | 0.01 | 0.03  | 0.53              |
| AVG.#1                 | 0.07     | 0.08   | 0.17                 | 0.00 | 0.09 | 0.00               | 0.01 | 0.05  | 0.47              |
| Drivers <sup>#2</sup>  | 15       | 17     | 35                   | 1    | 19   | 1                  | 2    | 10    | 100               |

<sup>#1</sup> AVG. of Slope =  $\sum$  (VI value of Indicator)/No. of Districts

<sup>#2</sup> Drivers = (Avg. of Indicator) / Aggregated VI \* 100

# **Important findings**

- 1. The districts of West Khasi Hills (0.62), East Khasi Hills (0.60), West Garo Hills (0.56), East Garo Hills (0.53) and Jaintia Hills (0.53) were found to be most vulnerable to climate change in the State.
- 2. Broadly, Vulnerability of Meghalaya arises from the socio-economic and biophysical factors.
- 3. The State has 4 major drivers of vulnerability
  - High Food grain Yield Variability (35%)
  - High rate of BPL (19%)
  - Lack of area under forest (17%)
  - Steepness of slope (15%)

# MEGHALAYA CLIMATE CHANGE CENTRE ADAPT TODAY...... ACT NOW !!



You can reach us at

Meghalaya Climate Change Centre Meghalaya Basin Development Authority Premises of Meghalaya Cooperative Housing Society Pvt. Ltd, Nongrim Hills, Shillong- 793003



E-mail: cccmegh@gmail.com

Website URL: meghalayaccc.org



Twitter: @MeghalayaCCC